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Many quantities that are standardly used to characterize a chemical system are related to free-energy
differences between particular states of the system. By statistical mechanics, free-energy differences may be
expressed in terms of averages over ensembles of atomic configurations for the molecular system of interest.
Here, we review the most useful formulae to calculate free-energy differences from ensembles generated by
molecular simulation, illustrate a number of recent developments, and highlight practical aspects of such
calculations with examples selected from the literature.

1. Introduction. ± The probability of finding a molecular system in one state or the
other is determined by the difference in free energy between those two states. As a
consequence, free-energy differences may be directly related to a wide range of
fundamental chemical quantities such as binding constants, solubilities, partition
coefficients, and adsorption coefficients. By means of statistical mechanics, free-energy
differences may also be expressed in terms of averages over ensembles of atomic
configurations for the molecular system of interest. Such an ensemble can be generated
by Monte Carlo (MC) or molecular-dynamics (MD) simulation techniques. However,
despite its inherent simplicity, the computation of free-energy differences from
molecular simulations in practice remains far from trivial. But, as techniques evolve
over time and novel applications of existing approaches appear, our ability to use
molecular-simulation techniques to predict important chemical phenomena continues
to grow steadily.

The purpose of this paper is, therefore, twofold. First, we will introduce the most-
useful formulae to calculate free-energy differences from ensembles generated by
molecular simulation, and, second, we will illustrate a number of recent developments, as
well as highlight practical aspects of such calculations, using examples selected from
published works. For more-thorough reviews on the methodology to calculate free energy
via molecular simulation, we refer to the literature [1 ±9]. In Sect. 2, the basic statistical
mechanical description of the free energy of a system is given. In Sect. 3, a number of
useful expressions for free-energy differences are reviewed. Sect. 4 contains a discussion
of a number of important technical issues, including choices to be made and pitfalls to be
avoided in practical free-energy calculations. These are illustrated by examples primarily
from our own work over many years. In Sect. 5, some conclusions are drawn.
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2. A Statistical Mechanical Description of Free Energy. ± In general terms, a
microscopic description of a particular molecular system can be given in the form of a
Hamilton operator or function. This is often simply expressed as the Hamiltonian
H(p,q) of the generalized coordinates q and their conjugate momenta p. For example,
the Hamiltonian for a classical system of N atoms, expressed in terms of the Cartesian
coordinates r� (r1, r2, . . ., rN) and momenta p� (p1, p2, . . ., pN) of each of the atoms has
the form

H p� r� � � �N
i�1

p2
i � 2mi � V r1� r2� ���� rN� �� (1)

where mi is the mass of atom i, and V(r) is the potential-energy function describing the
interactions between the atoms.

In the canonical ensemble the fundamental formula for theHelmholtz free energy F
is [10]

F N�V�T� � � �kBT ln h�3N
��

exp �H p� r� ��kBT� �dpdr� �
� (2)

where V is the volume of the system, T the absolute temperature, kB Boltzmann×s
constant, h Planck×s constant, and it is assumed that the N atoms are distinguishable.
The essential difficulty in calculating the free energy of a system is already evident in
Eqn. 2, which is dependent on a 6N-dimensional integral to be carried out over phase
space [11]. Since the integrand in Eqn. 2 is always positive, and the logarithm is a
monotonically increasing function, the calculated value of the free energy will become
progressively lower, as more regions of phase space are included in the integration. This
means that it is only possible to calculate the absolute free energy for a small number of
model systems for which the total accessible phase space can be enumerated. In
practice, only free-energy differences between two closely related states of a given
system can be calculated by means of ensembles generated by molecular simulation.

Within the framework of statistical mechanics, a variety of formulae for determin-
ing the difference in free energy between two states of a system, or the projection of
such a difference in free energy along a spatial (reaction) coordinate or a coordinate in
parameter space, can be derived. The different formulations available are all equivalent
within the limit of infinite sampling of phase space. In practice, however, as only a tiny
part of the total phase space accessible to a realistic system can ever be sampled by
molecular-simulation techniques, there are often significant differences in accuracy
between the free-energy estimates obtained from different formulae.

3. Methods to Compute Free-Energy Differences. ± Below, we list the most useful
statistical mechanical formulae and computational methods to obtain the difference in
free energy

�FBA�FB�FA�F(B)�F(A) (3)

between two states A and B of a molecular system.
3.1. Direct Counting. The most straightforward way to determine the difference in

free energy between two states of a system is simply to count the number of

��������� 	
����� ���� ± Vol. 85 (2002)3114



configurations in the corresponding states. For example, in the case of binding
constants, this involves simply counting the number of bound configurationsNB and the
number of unbound configurations NA in an ensemble generated during a MD or MC
simulation, with the difference in free energy being given by

�FBA��kBTln[NB/NA]. (4)

This technique is only appropriate, when both bound and unbound configurations occur
with sufficient frequency in the ensemble to obtain reliable statistics, i.e., when the
�FBA is small, and the barrier that determines the rate of binding and release is also
small. An example of the use of Eqn. 4 to determine the difference in free energy of
binding for a pair of chirally related molecules can be found in [12]. Direct counting has
the advantage that it does not depend on the definition of a reaction coordinate. It is
particularly well-suited to situations in which the end states are themselves ensembles
of structures, such as in the study of peptide folding [13]. By simply counting the
proportion of configurations that satisfy a particular objective criterion such as the
root-mean-square deviation (RMSD) from a particular folded conformation, it is
possible to make a direct comparison between the apparent stability of the peptide in a
simulation and experimental data.

3.2 Integration Methods. Integration methods determine the change in free energy
between two states of a system from the integral of the work required to go from an
initial state to a final state via a reversible path. The path itself may be physical or non-
physical.

3.2.1. Temperature Integration. Dividing Eqn. 2 by T and taking the partial
derivative with respect to 1/T at constant N and V we find

� F�T� �
� 1�T� � � H	 
� (5)

where 	 ¥ ¥ ¥ 
 denotes a canonical ensemble average. The free-energy difference of a
molecular system at two different temperatures TA and TB can then be found by means
of the temperature-integration formula

F TB� � TB � F TA� ��TA

� � � 1�TB

1�TA
H	 
d 1�T� �� (6)

The ensemble averages 	H
 of the total energy can be determined from constant-
volume simulations at a series of temperatures between TA and TB, and the integral in
Eqn. 6 evaluated numerically.

3.2.2. Pressure Integration. The partial derivative of the free energy Fwith respect to
the volume V at constant N and T is equal to the negative of the pressure P [10],

�F
�V

��P� (7)

The free-energy difference of a molecular system at two different volumes VA and VB

can then be found by means of the pressure-integration formula
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F�VB� � F�VA�=�
� VB

VA
PdV. (8)

The pressure of the system can be determined from constant-temperature simulations
at a series of volumes between VA and VB, and the integral in Eqn. 8 evaluated
numerically.

3.2.3. Thermodynamic Integration. A generalized form of the integration methods
described above can be achieved by the introduction of an arbitrary coupling parameter
linking two or more states of the system. With this approach, the Hamiltonian H(p,r) is
made a function of a coupling parameter � to give H(p,r ;�). The coupling parameter is
chosen such that when �� �A the Hamiltonian of the molecular system corresponds to
that of state A, i.e., H(p,r ;�A)�HA(p,r), and when �� �B the Hamiltonian of the
system corresponds to that of state B, i.e., H(p,r ;�B)�HB(p,r). If the Hamiltonian is a
function of � the free energyEqn. 2will also be a function of �, and the derivative of the
free energy with respect to � will be given by

dF �� �
d�

� �H �� �
��

� �
�

. (9)

From this, it follows directly that the free-energy difference between state A and state B
of a molecular system is given by

F��B� � F��A� �
� �B

�A

�H �� �
��

� �
�

d�, (10)

which is the so-called thermodynamic-integration formula [14]. The ensemble average
	�H/��
 is most commonly determined from simulations at a series of � values between
�A and �B, and the integral in Eqn. 10 evaluated numerically. In many applications, the
coupling-parameter approach is used to link two physical states via a nonphysical
pathway with �, for example, referring to a coordinate in parameter space. The choice
of � is, however, arbitrary, and � may equally well refer to a spatial coordinate. In either
case, the functional dependence of the system on � effectively describes the pathway
from the initial to the final state.

3.3. Perturbation Approaches. 3.3.1. Multistep Perturbation. An alternative to
thermodynamic integration is to adopt a perturbation approach. For example, if in the
coupling parameter approach the derivative of the free energy with respect to � is
expressed in terms of a finite difference

dF �� �
d�

� F �� ��� � � F �� �� ����, (11)

it may be readily shown, with Eqn. 2 and after rearrangement of factors that

dF �� �
d�

��kBT ln exp � H �� ��� � �H �� �� ��kBT� �	 
�
� ��

��. (12)

With a series of � values, �� apart, between �A and �B, we find

F��B� � F��A� �
��B���

���A

�kBT ln exp � H �� ��� � �H �� �� ��kBT�� 
�
	 �

�
�

(13)
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The ensemble average in Eqn. 13 can be determined from simulations at a series of �
values between �A and �B, and the sum of the logarithms taken to evaluate the free-
energy difference.

3.3.2. Single-Step Perturbation. In principle, Eqn. 13 holds for any value of �� so
long as the ensemble average indicated by the angular brackets converges. Thus, if the
difference between the Hamiltonians at �A and �B is small, or more precisely, if there is
sufficient overlap between the low-energy configurations of the ensembles belonging to
�A and �B, one may obtain the free-energy difference FBA from a one-step perturbation
[15]:

F��B� � F��A� � �kBT ln�	exp�� H �B� �H �A�� ��kBT� �� 
�A
�. (14)

The particle-insertion method of Widom [16] is an application of Eqn. 14 to obtain
the excess chemical potential of a system in state A by inserting a test particle (state B).

3.4. Extrapolation. If the Hamiltonians at �A and �B are closely related, one may use
a Taylor-series expansion for F(�) about �A

F��B� � F��A� �



n�1

dnF �� �
d�n

�����
���A

�B � �A�n�n�� , (15)

in which the successive derivatives of the free energy with respect to � can be expressed
as ensemble averages of the successive partial derivatives of the Hamiltonian with
respect to � [17]. The first derivative is given by Eqn. 9, the second by

d2F �� �
d�2 � �2H �� �

��2

� �
�

� kBT� ��1 �H �� �
��

� �H �� �
��

� �
�

� 
2
� �

�

. (16)

Higher derivatives up to fifth order can be found in [17]. Inserting the ensemble
average expressions for the successive derivatives of F(�) at �� �A in Eqn. 15, one
obtains the extrapolation formula for the free-energy difference �FBA.

3.5. Potential of Mean Force, Umbrella Sampling. The difference in free energy
between two states of a molecular system is a single number. Often, we would like to
know how the free energy of a system changes as a function of a particular coordinate
within the system, most commonly a spatial coordinate. In other words, we would like
to project the free energy onto a hypersurface in configuration (or parameter) space:

R(r)�R(r1,r2 ,. . .,rN). (17)

Such a hypersurface is commonly called a reaction coordinate and, in configurational
space, is a function of the positions of the atoms in the system. The free energy as a
function of the reaction coordinate R�, or the potential of mean force, then becomes [7]

F(R�)��kBT lnP(R�)� constant, (18)

where P(R�) is the probability of finding the system lying on the reaction coordinate. In
principle, there are three possibilities to compute the potential of mean force F(R�):
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1) From a normal simulation, one can select those configurations that satisfy R��R(r)
for any value R� of the R coordinate. The relative probability P(R�) follows then
directly from the relative frequency with which the selected configurations occur,
and the free-energy profile F(R�) can be obtained with Eqn. 18. This method yields
reliable values for F(R�) only for those R-coordinate values that occur frequently
during the simulation: R values that correspond to high-energy configurations, in
particular, will be poorly sampled.

2) To improve the sampling of specific regions of the R coordinate, a restraining or
umbrella potential [18], Vr (R(r);R0) can be added to the Hamiltonian H(p,r). For
example, the function

Vr R r� ��R0� � � 1

2
Kr R r� � � R0� �2 (19)

will restrain the molecular configurations harmonically to the R-coordinate value
R0. This (strongly) enhances (if Kr� 0) the probability of finding configurations
with R(r)�R0 in the restrained simulation. The unrestrained R-coordinate
probability P(R�) can be expressed in terms of the restrained probability Pr (R�)
and a restrained ensemble average 	 ¥ ¥ ¥ 
r [7]

P R�� � � Pr R�� � exp Vr R�R0� ��kBT� �	 
�1
r exp Vr R��R0� ��kBT� �. (20)

Using Eqn. 18, we find

F R�� � � �kBT lnPr R�� � � Vr R��R0� � � constant, (21)

the potential of mean-force formula to be used in conjunction with umbrella
sampling.

3) Alternatively, the system can be forced to move along the R coordinate by
performing a simulation in which the system is constrained to the hypersurface
R(r)�Rc. The derivative of the free energy of the constrained system with respect
to R then becomes [7]

dFc R� �
dR

�� fc R� �	 
c, (22)

where the symbol 	 ¥ ¥ ¥ 
c denotes an ensemble average over the constrained
simulation. The constraint force, i.e., the force that is to be added to the non-
constrained force in order to have the trajectory satisfy the constraint R(r)�Rc, is
denoted by fc(R). This force can be directly obtained from the constrained
simulation. Using Eqn. 22, we find

Fc�RB� � Fc�RA� � � � RB

RA
fc R� �	 
cdR, (23)

the potential of mean force formula to be used in conjunction with constrained
simulation to determine a free-energy profile.

3.6. Free-Energy Components: Entropy and Enthalpy. From classical thermodynamics,
we know that the change in free energy can be expressed in terms of two components, a
change in internal energy and a change in entropy, as follows:
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�FBA��EBA�T�SBA, (24)

No other physically meaningful separation of the free energy into components is
possible either experimentally or theoretically [19] [20]. The reason for calculating the
overall change in free energy rather than the change in the internal energy and the
entropy separately can be readily seen from the following formulae. The change in
internal energy when going from a state A to a state B is given by

�EBA � E��B� � E��A� � H �B� �	 
�B
� H �A� �	 
�A

. (25)

The change in entropy according to the thermodynamic-integration formalism is given by

�SBA � kBT
2

� ��1
� �B

�A

H �� �	 
�
�H �� �
��

� �
�

� H �� � �H �� �
��

� �
�

� 

d� . (26)

Thus, while the change in free energy can be expressed solely in terms of the
interactions that are perturbed in going from the A state to the B state as inEqn. 10, the
change in internal energy and the change in entropy are dependent on the total
Hamiltionian. This makes the differences in internal energy and entropy fundamentally
more difficult to determine than differences in free energy. Nevertheless, in certain
cases it is highly desirable to determine the entropy of a system. For example, to
understand whether a particular process is entropically or enthalpically driven. In such
cases one can place an upper bound on the entropy by using the formalism introduced
by Schlitter [21], who showed that

S �
1
2
kB ln det 1� kBTe2

h2
M�

� 

, (27)

where e is Euler×s number, �h is Planck×s constant divided by 2�, M� represents the
mass-weighted covariance matrix of the atom-positional fluctuations, and the other
symbols are as defined previously. Eqn. 27 is based on the approximation that each
degree of freedom can be represented by a quantum-mechanical harmonic oscillator.
Although approximate, Eqn. 27 has been shown to give reasonably accurate estimates
for the entropy for a number cases that can be determined analytically [22]. An
example of the use of Eqn. 27 to understand the nature of entropic contributions to
peptide stability is given in [23].

4. Computation of Free-Energy Differences in Practice. ± In this section, we briefly
discuss a number of technical issues that are important to achieve reliable results in
practical free-energy calculations. The points are illustrated with examples from our
own published work, which could be consulted for further details.

4.1. Choice of End States, Pathways and Cycle. Beside the most-appropriate
statistical mechanical formula, the computation of a free-energy difference generally
involves three basic choices: i) the definition of the end states A and B, ii) the
pathway that will connect them, and iii) the definition of one or more thermodynamic
cycles of which they are a part. Since the free energy is a thermodynamic state

��������� 	
����� ���� ± Vol. 85 (2002) 3119



function, a change in free energy �FBA will be independent of the path connecting
states A and B as long as the system is in equilibrium, and the change is performed in a
reversible way, and, along a closed path or cycle, �Fcycle� 0. As the efficiency of a
particular calculation depends greatly on the pathway that is chosen and the nature of
the changes imposed on the system, the use of thermodynamic cycles allows the
selection of more efficient (often nonphysical) paths. For example, complexation
(indicated by the symbol :) of two different guest molecules M� and M� to a host
molecule Mh in aqueous solution, or the hydration of these guest molecules, can be
described by the cycles

M�(gas)�M�(aq.)�Mh(aq.)�M� :Mh(aq.)

� � �
M�(gas)�M�(aq.)�Mh(aq.)�M� :Mh(aq.)

(28)

The relative free energies of hydration of M� and M� can be obtained by performing
free-energy simulations either along the horizontal arrows or along the vertical ones.
The possibility to compute �F for all legs of a cycle, however, also offers the
opportunity to obtain a lower bound on the error: �Fcycle.

As stated above, the accuracy of a free-energy computation can be enhanced by a
judicious choice of the end states, pathways, and cycles. This is because the proper
sampling of the ensembles and the convergence of the ensemble averages in Eqns. 10,
13 ± 16, 18, 20, 21, 23, and 25 ± 27 are very much dependent on: 1) the expression to be
averaged, 2) the particular point along the pathway (� value or R-coordinate value), 3)
the pathway chosen to connect states A and B in a cycle, 4) the � or R dependence of
the Hamiltonian.

For example, Fig. 1 illustrates the convergence of the first (Eqn. 9), second
(Eqn. 16) and higher-order derivatives of the free energy F. The figure actually shows
the Gibbs free energy G as a function of time obtained by extrapolating from an
ensemble at �� �A with Eqn. 15 for a change involving the inversion of a solute dipole
in a periodic box with 510 H2O molecules [17]. As higher-order derivatives of the free
energy are included in the extrapolation, the Gibbs free energy converges more slowly.
By way of contrast, Fig. 2 shows the convergence properties of Eqn. 14 for exactly the
same system. The value �� 1 (i.e. �� �B) represents the dipole inversion [24]. Every
time a configuration is sampled in the ensemble generated with H(�A� 0) that has a
low energy H(�B) for state B, the free-energy difference Eqn. 14 drops sharply. Clearly,
the convergence properties of linear combinations of derivatives of H, Eqn. 15, differ
greatly from the convergence properties of the exponential of a difference in
Hamiltonians, Eqn.14, even though, in the limit of infinite sampling, the two
approaches are equivalent.

Fig. 3 illustrates the dependence of the convergence of the ensemble average
(Eqn. 9) upon the � value or R-coordinate value. In this case, � is proportional to the
radius of a cavity in a periodic box with 512 H2O molecules for which the hydration
(excess) free energy was calculated [25]. The relative accuracy of the derivative of the
excess Gibbs free energy falls to less than 2.5% within 100 ps for the two smallest and
two largest radii (Fig. 3a, b, e, and f). This accuracy is achieved only after 250 ps for the
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two intermediate radii, which indicates instabilities in the H2O shell for these particular
cavity sizes.

Fig. 4 illustrates how the choice of the pathway to connect states X and Yaffects the
accuracy of �FYX [26]. In this example, the free energy was calculated by means of a
−slow growth× procedure in which the system was changed continuously throughout the
simulation. Path A used a linear combination of the two end states to achieve the
transition from state X, a model of butane preferring the trans-conformation, to state Y,
an artificial butane preferring a gauche conformation. By Path A, a value of �FYX�
1.66� 3.2 kJ mol�1 was obtained by averaging the result with 50 ps of simulation in the
forward direction, and the result with 50 ps of simulation in the reverse direction. The
error is half the difference between the forward and reverse directions. With the same
path but 500 ps of simulation in each direction �FYX� 1.72� 1.2 kJ mol�1 (not shown in
Fig. 4). Paths B and C represent alternative indirect pathways along which first (stage
I) the potential-energy barriers are reversibly reduced by a factor 1³2 or 1³4, respectively,
then the change of Hamiltonian from X to Y is made (stage II), and finally the
reduction of the potential-energy barriers is reversed (stage III). Path B yields a
�FYX� 1.33� 0.8 kJ mol�1 with a total of 60 ps of simulation in each direction or
�FYX� 1.60� 0.15 kJ mol�1 with 200 ps of simulation in each direction (not shown in
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Fig. 1. Running average of the extrapolated Gibbs free-energy change �G for the inversion of a dipole in H2O as
calculated with the free-energy extrapolation Eqn. 15. The different curves represent successive additions of

higher derivatives in Eqn. 15. The line at �G� 0 is the exact result. Results taken from [17].



Fig. 4). If a path is chosen for which the relaxation time of the system is minimal, the
system will stay close to equilibrium and the error in �FYX will be minimized.

The choice of the � or R dependence of the Hamiltonian requires special care in
cases where atoms or interaction sites are created or annihilated. The standard Van der
Waals and electrostatic-interaction terms contain a singularity when the interparticle
distance rij� 0. This may cause the ensemble averages in (10, 12 ± 16) to diverge and the
numerical integration of the equations of motion to become unstable during, e.g., the
initial phase of an atom being created [27]. Ignoring this singularity will potentially lead
to erratic and unreliable estimates of free-energy differences. Many approaches have
been proposed to avoid such problems, including nonlinear scaling of the potential and
various schemes to −protect× sites where atoms are to be created or annihilated [28].
The most effective approach is, however, to employ so-called soft-core nonbonded
interaction terms, e.g., for atom annihilation [27],
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Fig. 2. Running average of the extrapolated free-energy change �F for the inversion (�� 1) or the doubling (��
�1) of a dipole in H2O as calculated with the one-step perturbation Eqn. 14. For ���1, the extrapolation result
based on a Taylor series, Eqn. 15, truncated beyond the second-order term is also shown (dashed line). Results

taken from [24].



Vij rij� �
� � � �

�
qiqj

4��0�r �c 1 � �� �2�r2
ij

� �1�2

� 4�ij

�
1

�LJ 1 � �� �2� rij
�
�ij

� �6
� �2 �

1

�LJ 1 � �� �2� rij
�
�ij

� �6

��
, (29)

where �o �r is the dielectric permittivity, qi is the charge on atom i, and �ij and �ij are the
Lennard-Jones interaction parameters for atom pair (i,j). The constants �c and �LJ

govern the softness of the interaction [29]. For �� 1 or �c��LJ� 0, the original
interaction is obtained, and for �c� 0 and �LJ� 0, the interaction becomes softer for
decreasing �, as shown in Fig. 5. For atom creation comparable forms can be formulated
[30].

Finally, if the Hamiltonian depends parametrically on constraints, and these
constraints are made �- or R-dependent, the contribution of the constraint forces to the
free-energy change must be evaluated [3] [7] [30].
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Fig. 3. Estimate of the relative accuracy of the ensemble average of the excess hydration Gibbs free-energy
derivative, as a function of simulation length for six cavities of different sizes in H2O. Cavity radii are: a) 0.25 nm,

b) 0.30 nm, c) 0.325 nm, d) 0.35 nm, e) 0.375 nm, f) 0.40 nm. Results taken from [25].



4.2. Integration over � or R Coordinate. A free-energy-difference calculation often
involves a numerical integration over a range of parameter values (see Eqns. 6, 8, 10,
and 23). Various numerical-integration formulae, such as Gauss-Legendre quadrature,
Simpson×s rule, or trapezoidal approximation can be used [31] [32]. These methods
often assume, however, that any uncertainty is evenly distributed along the integrand.
In free-energy calculations, this is often not the case. The important point is to include
more function values in the parts of the � or R domain where the function to be
integrated is rapidly varying. This is illustrated in Fig. 6 for a thermodynamic-
integration calculation of the free-energy difference between N-acetyltryptamine and
N-methyl-3-(indol-3-yl)propanamide in H2O and in CHCl3 [32]: the regions around
�� 0.1 and �� 0.9 need more-closely-spaced � values.

4.3. One-Step Perturbation and Extrapolation. The difference in free energy
between a particular reference state A and any other state B of a system can be
determined with Eqn. 14, when the equilibrium ensemble corresponding to H(�A) is
completely known. Thus, a single simulation of the reference state A can, in principle,
be used to estimate free-energy differences to a manifold of different states B.
However, to obtain a reliable estimate of the free-energy difference �FBA with Eqn. 14,
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Fig. 4. A comparison of the calculated free-energy changes associated with the change of a model butane
molecule (state X) into an artificial butane molecule preferring gauche states (state Y) in liquid butane, as
calculated with thermodynamic integration for different pathways A, B and C. Pathway A is direct, whereas
pathways B and C involve a reduction of the potential-energy barriers in stage I and a rebuilding of them in
stage III. The difference between solid lines (forward mutation) and dashed lines (backward mutation) is

indicative of the sampling error. Results taken from [26].



low-energy configurations of the state defined by H(�B) must be members of the
ensemble of configurations generated with H(�A). Such overlap of the reference and
target ensembles does not occur, when atoms are either created or deleted, or for
mutations involving significant reorganization of the environment. As a consequence,
the change from �A to �B is normally split into a number of steps, as indicated inEqn. 13.
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Fig. 5. Scaling of nonbonded interaction with the soft-core Eqn. 29. The curves are the potential energy Vij (rij ;�)
for �� 1.0, 0.8, 0.6, . . ., 0.0 (curves lying progressively closer to the x-axis at larger separations) as a function of
the N�C separation rij. The soft-core parameter values are �c� 1 nm2 and �LJ� 0.3. Results taken from [27].

Fig. 6. Ensemble averages of the derivative of the Hamiltonian with respect to � for 13 � values for the change of
N-acetyltryptamine (�� 0) to N-methyl-3-(indol-3-yl)propanamide (�� 1), and cubic spline interpolations for

the simulations in H2O (solid line) and in CHCl3 (dashed line). Results taken from [32].



However, by means of an appropriately modified Hamiltonian H(�A) that is biased to
increase sampling in a localized region, for example, by placing soft-core interaction
sites of type (Eqn. 29) at locations where atoms are to be created or annihilated, it is
possible to predict the differences in binding or hydration free energies for a wide range
of compounds from a single simulation of modest length. For example, hydration free-
energy differences of a set of para-substituted phenols could be accurately estimated
with a single 300-ps simulation [24]. Furthermore, hydration free energies for a range of
different sized nonpolar compounds were also accurately estimated from a single 1 ns
simulation of an appropriate reference state [33]. For highly polar molecules that can
form specific H-bonding arrangements as well as inducing long-range order in the
environment, longer simulations are required to sample a sufficient number of
appropriate configurations for the results to be statistically reliable [33]. Orientational
and translational sampling of the solute within the same solvent configuration can also
be used to improve the statistics [34]. For example, Table 1 shows hydration free
energies for a series of polar and nonpolar compounds extrapolated from a single 1-ns
simulation of a neutral cavity in H2O. Despite the differences in size and polarity of the
compounds, the average error (unsigned) between the exact (TI) results and the
extrapolated values is only 2.0 kJ mol�1. One-step perturbation or extrapolation
methods can easily yield a 1000-fold increase in efficiency compared to multi-step
perturbation or thermodynamic-integration calculations for sets of related compounds.
As such, they are well-suited for the rapid in-silico screening of potential drug
molecules [35], force-field refinement [36], or even for predicting the protonation state
of peptides as a function of conformation [37].

4.4. Cycle Closure. When carrying out more than one change of a molecular system,
e.g. from system A to B, and from A to C, the quality of the equilibration, sampling, and
integration over � can be tested by performing the change from system B to C, which
closes a thermodynamic cycle

�FBA��FCB��FAC� 0. (30)
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Table 1. Hydration Free Energies for a Series of Polar and Nonpolar Compounds Calculated with a One-Step
Perturbation Approacha)

Solute �F [kJ mol�1]

Extrapolation Exact (TI)

SPC/E H2O � 24.8 � 28.9
SPC H2O � 23.0 � 24.3
MeOH � 19.0 � 20.8
EtOH � 9.1 � 14.2
CHCl3 3.5 � 0.7
CH4 7.7 8.0
Me2CH2 10.8 9.0

a) The reference state was a neutral soft-core cavity. The extrapolated �F values were calculated with Eqn.14
based on a single 1-ns simulation of the reference state in a periodic box containing ca. 1000 SPC H2O molecules.
The �F for the creation of the reference cavity in H2O was 10.9 kJ mol�1. The exact results are obtained from
multiple simulations (ca. 50-ps simulations at 10 to 21 � values for each mutation) with thermodynamic
integration (TI), Eqn. 10. Results taken from [34].



Table 2 shows the values for the left side in Eqn. 30 for each of the possible three-
membered closed cycles involving mutations between p-chlorophenol, p-methylphenol,
p-hydroxybenzonitrile, and p-methoxyphenol in H2O and, when this guest molecule is
bound to �-cyclodextrin (�-CD) in H2O [31]. The numerical integration over � was
performed with 9 or 12 � values (20-ps sampling in H2O and 40-ps sampling when
bound to �-CD) and a trapezoidal formula. Ideally, all values in Table 2 should be zero.
The �G values are a lower bound on the error of the different free-energy calculations.
This is independent of the force field used. The ��G values cannot be used for other
than a lower-limit error estimate, since they are often reduced by compensation of
errors.

4.5. Potential of Mean-Force Calculation or Umbrella Sampling in Practice.
Umbrella sampling or constrained simulation along a chosen reaction coordinate or
pathway is a useful technique to determine the free-energy difference between two
states of a molecular system separated by an energy barrier [38]. However, only the
free energy as function of the chosen R coordinate is obtained. The use of another R
coordinate to connect the end states may lead to a different free-energy difference.
Performing potential of mean-force calculations along different R coordinates leading
to approximately equal end states may indicate the dependence of the free-energy
differences obtained upon the chosen reaction coordinate [39].

When umbrella-sampling techniques are used, the choice of restraining term Vr

(R(r);R0) in the Hamiltonian will greatly affect the sampling efficiency [40]. If the R
coordinate is a linear combination of generalized coordinates, the proper choice of the
restraining term requires care [41]. Finally, a potential of mean force along two reaction
coordinates can be obtained by an extension of the one-dimensional Eqn. 18 to two
dimensions [42]. Determining a potential of mean force in more than two dimensions
becomes an almost impossible task due to the scaling of the computational effort as nd,
where n is the number of points per R coordinate to be sampled with individual
simulations, and d is the number of independent R coordinates.

5. Conclusions. ± The most useful formulae and techniques to compute free-energy
differences by molecular simulation have been reviewed, and a number of practical aspects
of such calculations have been illustrated with examples from the literature. To obtain
reliable estimates of the difference in free energy between two states of a system three
crucial conditions must be met: i) the simulation must be performed with a sufficiently
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Table 2. Total Changes in Gibbs Free Energy for Each of the Possible Three-Membered (closed) Cycles
Involving Mutations between p-Chlorophenol, p-Methylphenol, p-Hydroxybenzonitrile and p-Methoxyphenola)

Cycle �G in H2O �G in �-CD ��G in �-CD/H2O

9 points 12 points 9 points 12 points 9 points 12 points

Cl�Me�CN�Cl 0.5 0.3 0.7 0.1 0.2 0.1
Cl�CN�OMe�Cl 0.7 1.0 � 0.7 1.2 � 1.4 0.2
Cl�MeCN�OMe�Cl 1.9 0.2 3.2 1.7 1.3 1.5
Me�OMe�CN�Me 0.7 � 1.1 3.2 0.4 2.5 1.5

a) From thermodynamic integration Eqn. 10. Simulations represent 9 or 12 � points per leg of the cycle and for
different environments (H2O and �-cyclodextrin (�-CD) in H2O). Values in kJ mol�1. Results taken from [31].



accurate force field; ii) the system must be in proper equilibrium at all times; iii) a set of
configurations representative of the complete equilibrium ensemble must be sampled at
each point. In addition, the selection of the most appropriate statistical mechanical
formula for a particular application, together with the incorporation of a judiciously
chosen biasing function into the Hamiltonian to speed equilibration and promote
sampling, may greatly enhance the accuracy and efficiency of free-energy calculations.
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